I noticed this little animal that it took my intrest.I noticed that cthulhu's organic behavior is very similar to these creatures .Intresting right? So let's go to test what this animal called tardigrade is.Also you can find an nice video here: https://www.youtube.com/watch?v=-irqb99btZY
Tardigrades , known colloquially as water bears or moss piglets, are a phylum of water-dwelling eight-legged segmented micro-animals. They were first described by the German zoologist Johann August Ephraim Goeze in 1773, who called them little water bears. In 1777, the Italian biologist Lazzaro Spallanzani named them Tardigrada, which means "slow steppers".
They have been found everywhere, from mountaintops to the deep sea and mud volcanoes, and from tropical rainforests to the Antarctic. Tardigrades are among the most resilient animals known, with individual species able to survive extreme conditions—such as exposure to extreme temperatures, extreme pressures (both high and low), air deprivation, radiation, dehydration, and starvation—that would quickly kill most other known forms of life. Tardigrades have survived exposure to outer space. About 1,300 known species form the phylum Tardigrada, a part of the superphylum Ecdysozoa. The earliest known true members of the group are known from Cretaceous amber in North America, but are essentially modern forms, and therefore likely have a significantly earlier origin, as they diverged from their closest relatives in the Cambrian, over 500 million years ago.
Tardigrades are usually about 0.5 mm (0.02 in) long when fully grown.They are short and plump, with four pairs of legs, each ending in claws (usually four to eight) or suction disks. Tardigrades are prevalent in mosses and lichens and feed on plant cells, algae, and small invertebrates. When collected, they may be viewed under a low-power microscope, making them accessible to students and amateur scientists.
Scientists have reported tardigrades in hot springs, on top of the Himalaya (6,000 m; 20,000 ft, above sea level) to the deep sea (−4,000 m; −13,000 ft) and from the polar regions to the equator, under layers of solid ice, and in ocean sediments. Many species can be found in milder environments such as lakes, ponds, and meadows, while others can be found in stone walls and roofs. Tardigrades are most common in moist environments, but can stay active wherever they can retain at least some moisture.
Tardigrades are thought to be able to survive even complete global mass extinction events due to astrophysical events, such as gamma-ray bursts, or large meteorite impacts. Some of them can withstand extremely cold temperatures down to 1 K (−458 °F; −272 °C) (close to absolute zero), while others can withstand extremely hot temperatures up to 420 K (300 °F; 150 °C) for several minutes, pressures about six times greater than those found in the deepest ocean trenches, ionizing radiation at doses hundreds of times higher than the lethal dose for a human, and the vacuum of outer space. Tardigrades that live in harsh conditions undergo an annual process of cyclomorphosis, allowing for survival in sub-zero temperatures.
They are not considered extremophilic because they are not adapted to exploit these conditions, only to endure them. This means that their chances of dying increase the longer they are exposed to the extreme environments, whereas true extremophiles thrive in a physically or geochemically extreme environment that would harm most other organisms.
Tardigrades are one of the few groups of species that are capable of suspending their metabolism (see cryptobiosis). While in this state, their metabolism lowers to less than 0.01% of normal and their water content can drop to 1% of normal, and they can go without food or water for more than 30 years, only to later rehydrate, forage, and reproduce. Many species of tardigrade can survive in a dehydrated state up to five years, or in exceptional cases longer. Depending on the environment, they may enter this state via anhydrobiosis, cryobiosis, osmobiosis, or anoxybiosis. Their ability to remain desiccated for such long periods was thought to be largely dependent on the high levels of the nonreducing sugar trehalose, which protects their membranes, although recent research suggests that tardigrades have a unique type of disordered protein that serves a similar purpose: It replaces water in the cells and adopts a glassy, vitrified state when the animals dry out. Their DNA is further protected from radiation by a protein called "dsup" (short for damage suppressor). In this cryptobiotic state, the tardigrade is known as a tun.
Tardigrades are able to survive in extreme environments that would kill almost any other animal. Extremes at which tardigrades can survive include those of:
Temperature – tardigrades can survive:
A few minutes at 151 °C (304 °F)
30 years at −20 °C (−4 °F)
A few days at −200 °C (−328 °F; 73 K)
A few minutes at −272 °C (−458 °F; 1 K)
Research published in 2020 shows that tardigrades are sensitive to high temperatures. Researchers showed it takes 48 hours at 98.8 °F (37.1 °C) to kill half of active tardigrades that have not been acclimated to heat. Acclimation boosted the temperature needed to kill half of active tardigrades to 99.7 °F (37.6 °C). Tardigrades in the tun state fared a bit better, tolerating higher temperatures. It took heating to 180.9 °F (82.7 °C) to kill half of tun-state tardigrades within 1 hour. Longer exposure time decreased the temperature needed for lethality, though. For 24 hours of exposure, 145.6 °F (63.1 °C) was enough to kill half of the tun-state tardigrades
Pressure – they can withstand the extremely low pressure of a vacuum and also very high pressures, more than 1,200 times atmospheric pressure. Some species can also withstand pressure of 6,000 atmospheres, which is nearly six times the pressure of water in the deepest ocean trench, the Mariana Trench.
Dehydration – the longest that living tardigrades have been shown to survive in a dry state is nearly 10 years, although there is one report of leg movement, not generally considered "survival", in a 120-year-old specimen from dried moss. When exposed to extremely low temperatures, their body composition goes from 85% water to only 3%. Because water expands upon freezing, dehydration ensures the tardigrades’ tissues are not ruptured by the expansion of freezing ice.
Radiation – tardigrades can withstand 1,000 times more radiation than other animals, median lethal doses of 5,000 Gy (of gamma rays) and 6,200 Gy (of heavy ions) in hydrated animals (5 to 10 Gy could be fatal to a human). The only explanation found in earlier experiments for this ability was that their lowered water state provides fewer reactants for ionizing radiation.However, subsequent research found that tardigrades, when hydrated, still remain highly resistant to shortwave UV radiation in comparison to other animals, and that one factor for this is their ability to efficiently repair damage to their DNA resulting from that exposure.
Irradiation of tardigrade eggs collected directly from a natural substrate (moss) showed a clear dose-related response, with a steep decline in hatchability at doses up to 4 kGy, above which no eggs hatched. The eggs were more tolerant to radiation late in development. No eggs irradiated at the early developmental stage hatched, and only one egg at middle stage hatched, while eggs irradiated in the late stage hatched at a rate indistinguishable from controls.
Environmental toxins – tardigrades are reported to undergo chemobiosis, a cryptobiotic response to high levels of environmental toxins. However, as of 2001, these laboratory results have yet to be verified.
Survival after exposure to outer space
Tardigrades are the first known animal to survive after exposure to outer space. In September 2007, dehydrated tardigrades were taken into low Earth orbit on the FOTON-M3 mission carrying the BIOPAN astrobiology payload. For 10 days, groups of tardigrades, some of them previously dehydrated, some of them not, were exposed to the hard vacuum of outer space, or vacuum and solar UV radiation. Back on Earth, over 68% of the subjects protected from solar UV radiation were reanimated within 30 minutes following rehydration, although subsequent mortality was high; many of these produced viable embryos.In contrast, hydrated samples exposed to the combined effect of vacuum and full solar UV radiation had significantly reduced survival, with only three subjects of Milnesium tardigradum surviving. In May 2011, Italian scientists sent tardigrades on board the International Space Station along with extremophiles on STS-134, the final flight of Space Shuttle Endeavour. Their conclusion was that microgravity and cosmic radiation "did not significantly affect survival of tardigrades in flight, and stated that tardigrades represent a useful animal for space research." In November 2011, they were among the organisms to be sent by the U.S.-based Planetary Society on the Russian Fobos-Grunt mission's Living Interplanetary Flight Experiment to Phobos; however, the launch failed. In August 2019, scientists reported that a capsule containing tardigrades in a cryptobiotic state may have survived for a while on the Moon after the April 2019 crash landing of Beresheet, a failed Israeli lunar lander.
Now we will test these with Cthulhu's organic behavior in the mythos.
1)He came to earth from the outer space without anykind of spacesuit or spaceship.
2)He came to the earth's atmosphere and he survived.
3)He lives in R'lyeh for so many years without food and water and he still alive.
4)He can survive to the water and to land.
5)When the enviroment is not suitable(the stars are wrong) he falls to a very deep sleep until the enviroment to be suitable for him.
As we can see Cthulhu does many things that scientificly are prooven.Also we have to note that there is a theory by 30 scientists that octopuses are probably are alien creatures,their DNA came via meteorite to our planet and it was mixed with the DNA with the one of squids.Yes many questions are still unanswered but I am pretty sure that in the future science will have new evidence and new information that they will help us.I hope this helped.

That is not dead which can eternal lie.
~ Tsoker